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ABSTRACT Although investigations in computational
neuroscience have been extensive, the opportunity (that has
made such a marked difference in physical sciences) to test
detailed and subtle quantitative consequences of a theory
against experimental results is rare. In this paper, we outline
a testable consequence of two contrasting theories of synaptic
plasticity applied to the disconnection in visual cortex of the
closed eye in monocular deprivation. This disconnection is
sometimes thought to be the consequence of a process that
stems from a competition of inputs for a limited resource such
as neurotrophin. Such a process leads to what we call spatial
competition, or heterosynaptic synaptic modification. A con-
trasting view—exemplified by the Bienenstock, Cooper, and
Munro (BCM) theory—is that patterns of input activity
compete in the temporal domain. This temporal competition
is homosynaptic and does not require a conserved resource.
The two mechanisms, homosynaptic and heterosynaptic, are
the distinguishing characteristics of two general classes of
learning rules we explore by using a realistic environment
composed of natural scenes. These alternative views lead to
opposite dependence on the level of presynaptic activity of the
rate of disconnection of the closed eye in monocular depriva-
tion. This strong and testable consequence sets the stage for
a critical distinguishing experiment. This experiment has
been done and supports the second view. These results have
important implications for the processes of learning and
memory storage in neocortex.

Although investigations in computational neuroscience have
been extensive, the opportunity (that has made such a marked
difference in physical sciences) to test detailed and subtle
quantitative consequences of a theory against experimental
results is rare (1). In this paper, we outline a testable conse-
quence of two contrasting theories of synaptic plasticity ap-
plied to the disconnection in visual cortex of the closed eye in
monocular deprivation (MD). This disconnection is sometimes
thought to be the consequence of a process that stems from a
competition of inputs for a limited resource (2, 3) such as
neurotrophin (4). Such a process leads to what we call spatial
competition, or heterosynaptic synaptic modification. A con-
trasting view—exemplified by the Bienenstock, Cooper, and
Munro (BCM) theory (5)—is that patterns of input activity
compete in the temporal domain. This temporal competition
is homosynaptic and does not require a conserved resource.
These alternative views lead to opposite dependence on the
level of presynaptic activity of the rate of disconnection of the
closed eye in MD. This strong and testable consequence sets
the stage for a critical distinguishing experiment. This exper-
iment has been done (6) and supports the second view. These
results have important implications for the processes of learn-
ing and memory storage in neocortex.

In this paper we present results using two different classes
of learning rules, one that exhibits heterosynaptic synaptic
modification and one (of which BCM is a member) that
exhibits homosynaptic synaptic modification. These general
classes of learning rules are characterized by their dominant
method of stabilization—weight decay for the heterosynaptic
class and a sliding threshold for the homosynaptic class. The
dynamics of the closed-eye disconnection in MD enables us to
draw an experimentally testable distinction between the two
different classes. We use a visual environment composed of
natural scenes that is realistic enough so that the simulations
can meaningfully be compared with the experiment.

METHODS

We use 13 3 13 circular patches from 12 images of natural
scenes to represent the visual environment. The images are
processed either by a retinal difference of Gaussians, with the
biologically observed '3:1 ratio of the surround to the center
of the ganglion receptive field (8), or a whitening filter
corresponding to the lateral geniculate nucleus response prop-
erties (9). The response of the cortical cell is given by c 5
s(mzd), where s(z) is a rectifying sigmoid, which sets the
minimum and maximum values of the postsynaptic response.
Neurons with a particular learning rule are trained with
natural scene stimulus to both eyes until we obtain binocular
oriented receptive fields. To model deprivation, we continue
training but present uniform noise to the deprived eye(s). To
quantitatively measure the timing of the deprivation experi-
ments, we measure the response of the neurons by using
oriented stimuli and then estimate the characteristic half-time
for the decay of neuronal response. The specific learning rules
used are shown in Learning Rules. The details of the different
classes of learning rules and how they are derived are given in
Blais et al. (10).

RESULTS

In MD, one eye is deprived of patterned stimuli; this results in
the loss of responsiveness of cells in kitten9s striate cortex to
stimulation through the deprived eye (11, 12). Because the loss
of response is much more striking in monocular, as opposed to
binocular, deprivation (13, 14), it is sometimes thought to be
the consequence of a competitive process. We call such a
process (generally arising through a subtractive term in the
synaptic modification equation) spatially competitive. Mathe-
matically it has the form

ṁ 5 f~c!d 2 g~c!m [1]

where m is the vector of synaptic weights, d and c are the pre-
and postsynaptic activity of the cell, respectively, and f(c) and
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g(c) are functions of the postsynaptic activity. This form
includes most stabilized Hebb-like rules as well as some others
we have explored (see Learning Rules and ref. 10). When the
subtractive term plays the crucial role in stabilizing the system,
a heterosynaptic learning rule is at work. This has the effect of
decreasing some synapses if others increase to keep some
measure (such as S mj or umu2) constant. Thus, the strength of
synapses can change even in the absence of presynaptic activity
to those synapses. Not all heterosynaptic processes lead to the
observed receptive fields or ocular dominance distributions
(15, 16). When they do (as they have in all of the cases we have
analyzed), the disconnection of the closed eye either decreases
or remains constant as the presynaptic activity from the closed
eye increases, and presynaptic activity from the closed eye is
not required for the disconnection (Fig. 1a).

In contrast, in the BCM theory (5) and other homosynaptic
rules we explored (see Learning Rules and ref. 10), synaptic
modification leads to what we call temporal competition
between input patterns. This results in the disconnection of the
closed eye because of homosynaptic long-term depression
driven by presynaptic activity from that eye. As the presynaptic
activity from the closed eye increases the rate of disconnection
increases (Fig. 1b). To illuminate the origin of this counter-
intuitive result, as well as to display further consequences and
precise parameter dependence, we present below a simplified
analysis of MD according to the BCM theory.

The BCM theory (5) postulates synaptic modification of the
form

ṁ 5 f~c, uM!d [2]

FIG. 1. The effect of noise from the closed eye on the disconnection of the closed eye in MD. (a) The heterosynaptic rule. K2, as described
in Blais et al. (10) and Learning Rules, is used to train a neuron in the natural scene environment to obtain binocular, oriented receptive fields (RF).
Shown are the results of monocular deprivation starting from the binocular state. Left and right receptive fields (Upper), before and after depriving
the left eye. Each pixel represents a point in space over the retina, where white and black correspond to strong and weak synaptic strengths,
respectively, from that retinal input. The responses of the cell to oriented sine gratings (Lower) as a function of time during deprivation in a low-noise
environment (Lower Left) and a high-noise environment (Lower Right). (b) The homosynaptic rule, BCM, is used to train a neuron. All of the
conventions are the same as a. The two rules have the opposite dependence on the noise from the closed eye of the rate of disconnection of the
closed eye in MD.
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where uM is the moving modification threshold and f(c,uM) is
shown in Fig. 2. The moving threshold stabilizes the weights.
The general form of BCM modification has been directly
verified experimentally (17–19).

In normal visual environments, extensive simulations have
shown that BCM synaptic modification leads to experimentally
observed receptive fields (20) as well as to cells with varying
ocular dominance (15, 16) and direction selectivity (21).
Furthermore, such simulations have shown that in various
deprived-visual environments, there is qualitative agreement
between theory and experiment on the kinetics and final states
of the receptive fields (21). Examples of BCM simulations in
a visual environment composed of natural images (20) are
shown in Fig. 3. These simulations illustrate how binocular
BCM neurons develop in normal (Fig. 3, NR) and deprived
visual conditions (see Methods). In these simulations, the
closed-eye input is taken to be noise corresponding to the
levels of lateral geniculate nucleus activity driven by input from
the closed eye. A single set of parameters can be found such
that both the final weight configurations and the time se-
quences are in qualitative agreement with experimental results
for the various rearing conditions.

The effects of binocular deprivation (BD) are much less
severe than those observed for MD (13, 14). This has led to the

hypothesis that a spatially competitive process is at work.
However, BD also can be produced by a homosynaptic mech-
anism. In the BCM theory, the difference between the rates of
disconnection in BD and MD is the result of a moving
threshold. This effect is illustrated in Fig. 4. During MD, the
patterned input into the open eye keeps the modification
threshold (uM) high, resulting in a large depression region of
the modification function (Fig. 4a). In BD, the unpatterned
activity entering both eyes is insufficient to maintain the
threshold at a high value, resulting in a significantly reduced
depression (Fig. 4b). Eventually, binocularly deprived cells lose
orientation selectivity, but the time scale is much longer than
for the loss of response to the closed eye in MD.

FIG. 2. BCM synaptic modification function. Shown is the function
f(c,uM) as a function of c. This function determines the change in the
weights, m (Eq. 2). It is characterized by a negative region (LTD) for
small postsynaptic depolarization, a positive region (LTP) for large
postsynaptic depolarization, and a moving crossover point between
LTD and LTP, uM.

FIG. 3. Sample BCM Simulations. (Left) Final weight configura-
tions, as described in Fig. 1. (Right) Maximum response to oriented
stimuli, as a function of time. Simulations from top to bottom are as
follows. Normal Rearing (NR): both eyes presented with patterned
input. Monocular Deprivation (MD): after NR, the left eye is pre-
sented with noisy input and the right with patterned input. Reverse
Suture (RS): after MD, the eye given noisy input is now given
patterned input, and the other eye is given noisy input. BD: after NR,
both eyes are given noisy input. It is important to note that if BD is run
longer, selectivity will eventually be lost.

FIG. 4. Comparison between MD (a) and BD (b). (a) Shown is the
response from the closed eye (Upper Left) and the modification
threshold, uM (Upper Right), as functions of time during MD. Shown
also is the modification function, f(c,uM) (Lower), sampled at three
different time steps. During MD, the patterned input into the open eye
keeps the modification threshold uM high, resulting in a more en-
hanced depression region of the modification function. (b) Same
conventions as in a, but for BD. In BD, the unpatterned activity
entering both eyes is insufficient to maintain the threshold at a high
value, resulting in a significantly reduced depression. Eventually,
binocularly deprived cells will lose orientation selectivity, but the time
scale is much longer than that for the loss of response of cells to the
closed eye in MD.
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The noise dependence of the rate of disconnection of the
closed eye in MD according to the BCM theory is obtained as
follows. BCM modification (Eq. 2) for the deprived channel in
MD is.

ṁclosed 5 f~c, uM!n, [3]

where n is the presynaptic input from the closed eye and c is
the postsynaptic response. By using a linear approximation, c
becomes

c 5 mopenzdopen 1 mclosedzn. [4]

To best illustrate the effect, we calculate in the simplified
situation in which the neuron has become selective to open eye
inputs, so that mopenzdopen . uM or zero, and c . uM 1 mclosedzn
or mclosedzn, depending on whether the input to the open eye
is a preferred or a nonpreferred pattern.

Near the two zero crossings, we can make a linear approx-
imation to f so that f . 2«2c near c 5 0 and f . 1«1(c 2
uM) near c . uM. Here «2 and «1 are the slopes near zero and
uM. Averaging over the noise input, for mean zero noise, we
obtain for non-preferred input to the open eye

ṁclosed . 2«2n2mclosed [5]

and for preferred input to the open eye

ṁclosed . 1«1n2mclosed. [6]

For selective neurons, nonpreferred inputs greatly outnumber
preferred inputs, so that

logF mclosed~t!
mclosed~0!G , 2n2t . [7]

Thus, the rate of disconnection of the closed eye increases
exponentially with increasing noise from that channel; faster
disconnection occurs if the noise input from this deprived eye
is greater. This is a subtle and counterintuitive consequence of
the BCM theory. The results of this simplified analysis carry
over into the more complex case of simulations using real
images as input and learning rules of the homosynaptic class
(Figs. 1 and 5).

DISCUSSION

We are thus capable of distinguishing between two contrasting
points of view, both of which can account for the disconnection
of the closed eye in MD but differ fundamentally in their
dynamics and parameter dependence. Other rules have been
proposed to account for segregation of ocular dominance
columns (22, 23). These studies used environments and
constraints that are not easily compared with the current
work without the addition of extra assumptions. In most
cases, however, when applied to the case of MD, these rules
can be understood as correlational rules (24) and be cate-
gorized into the heterosynaptic class of learning rules.

FIG. 5. Time for the disconnection of closed eye in MD as a function of the deprived-eye lateral geniculate nucleus activity (Noise). The times
are scaled so that the time is set to 1 at a noise level of unit variance. (a) The rules in the homosynaptic class [Quadratic BCM, K1, and S1 as described
in Blais et al. (10) and Learning Rules]. (b) The rules in the heterosynaptic class (PCA, K2, and S2). The homosynaptic class of learning rules have
a faster loss of response to the closed eye for higher presynaptic activity levels in the closed eye channel. The heterosynaptic class of learning rules
have the opposite behavior.
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Recent experimental evidence (6) clearly is consistent with
the predictions of the BCM theory and the other rules in the
homosynaptic class.

It is important to note that these two classes of rules
require different underlying molecular and physiological
mechanisms. It is equally important that evolving experi-
mental techniques will make it possible to determine the
parameters of the theory with increasing precision. This will
lead to deep insights into the mechanisms underlying learn-
ing and memory storage. In addition, these results may have
clinical implications in the treatment of amblyopia (28).

LEARNING RULES

The following learning rules (derived in ref. 10) were explored.
Homosynaptic Class. Quadratic BCM (25).

dm
dt

5 c~c 2 E@c2#!d, [8]

where E[z] is approximated by the temporal average:

E@cn~t!# <
1
t E

2`

t

cn~t9!e2~t2t9!ytdt9.

Skewness 1. This learning rule is based on the statistical
measure of skewness.

dm
dt

5 c~c 2 E@c3#yE@c2#!dyE1.5@c2#. [9]

Kurtosis 1. This learning is based on the statistical measure
of kurtosis.

dm
dt

5 c~c2 2 E@c4#yE@c2#!dyE2@c2#. [10]

Heterosynaptic Class. Skewness 2. This learning rule is
based on a different form of the statistical measure of skew-
ness.

dm
dt

5 c~c 2 E0.5@c2#!d 2 c2~c 2 E0.5@c2#!m. [11]

Kurtosis 2. This learning is based on a different form of the
statistical measure of kurtosis.

dm
dt

5 c~c2 2 3E@c2#d 2 c2~c2 2 3E@c2#m!. [12]

Linear and nonlinear principal component analysis (PCA).
This learning rule is a stabilized Hebb rule introduced by Oja

(26) for performing PCA. The nonlinear version is a straight-
forward generalization of the original PCA rule.

dm
dt

5 cd 2 c2m. [13]

In all of the above learning rules, except for both versions of
the PCA rule, the value of the activity of the cell is given by

c 5 s~mzd!, [14]

where s(z) is a nonlinear function of its argument. For linear,
PCA the activity is given simply as c 5 mzd. The nonlinear PCA
rule uses a polynomial function, such as s(mzd)3, which is not
biologically plausible but has some nice mathematical prop-
erties (27). All of the other rules use the more realistic function

s~mzd! 5 H s1 tanh(mzdys1) for mzd $ 0
s2 tanh(mzdys2) for mzd , 0 s~ z !, [15]

where s1 and s2 set the maximum and minimum activity levels,
respectively.
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